Linear computations over quantum many-to-one communication networks offer opportunities for communication cost improvements through schemes that exploit quantum entanglement among transmitters to achieve superdense coding gains, combined with classical techniques such as interference alignment. The problem becomes much more broadly accessible if suitable abstractions can be found for the underlying quantum functionality via classical black box models. This work formalizes such an abstraction in the form of an \qmarks{$N$-sum box}, a black box generalization of a two-sum protocol of Song \emph{et al.} with recent applications to $N$-servers private information retrieval. The $N$-sum box has communication cost of $N$ qudits and classical output of a vector of $N$ $q$-ary digits linearly dependent (via an $N \times 2N$ transfer matrix) on $2N$ classical inputs distributed among $N$ transmitters. We characterize which transfer matrices are feasible by our construction, both with and without the possibility of additional locally invertible classical operations at the transmitters and receivers.
翻译:通过利用发送器之间的量子纠缠实现超密编码增益的方案,以及干扰对齐等经典技术,量子多对一通信网络上的线性计算为通信成本优化提供了机会。如果可以通过经典黑盒模型找到适当的抽象来描述基础量子功能,则这个问题就会变得更加广泛可行。本研究以 \qmarks{$N$-Sum 盒} 的形式对这样一种抽象进行了规范化,该抽象是 Song 等人的两项计划协议的黑盒泛化,最近被应用于 $N$ 服务器私有信息检索。$N$-Sum 盒的通信成本是 $N$ 个 qudit,而经典输出是一个由分布在 $N$ 个发射器中的 $2N$ 个经典输入的线性相关矢量,通过一个 $N\times2N$ 的传输矩阵进行描述。我们描述了哪些传输矩阵可以通过我们的构造实现,无论是否在发射器和接收器处具有附加的可本地反演的经典操作。