Diffusion Models (DMs) are powerful generative models that add Gaussian noise to the data and learn to remove it. We wanted to determine which noise distribution (Gaussian or non-Gaussian) led to better generated data in DMs. Since DMs do not work by design with non-Gaussian noise, we built a framework that allows reversing a diffusion process with non-Gaussian location-scale noise. We use that framework to show that the Gaussian distribution performs the best over a wide range of other distributions (Laplace, Uniform, t, Generalized-Gaussian).
翻译:扩散模型(DMs)是功能强大的生成模型,它可以将高斯噪声添加到数据中并学习如何消除它。我们想要确定哪种噪声分布(高斯或非高斯)在DMs中生成更好的数据。由于DMs不能通过设计使用非高斯噪声,因此我们构建了一个框架,允许使用非高斯位置-尺度噪声来反向扩散过程。我们使用该框架表明,高斯分布在广泛的其他分布(拉普拉斯,均匀分布,t分布,广义高斯分布)中表现最好。