Quality-Diversity (QD) algorithms evolve behaviourally diverse and high-performing solutions. To illuminate the elite solutions for a space of behaviours, QD algorithms require the definition of a suitable behaviour space. If the behaviour space is high-dimensional, a suitable dimensionality reduction technique is required to maintain a limited number of behavioural niches. While current methodologies for automated behaviour spaces focus on changing the geometry or on unsupervised learning, there remains a need for customising behavioural diversity to a particular meta-objective specified by the end-user. In the newly emerging framework of QD Meta-Evolution, or QD-Meta for short, one evolves a population of QD algorithms, each with different algorithmic and representational characteristics, to optimise the algorithms and their resulting archives to a user-defined meta-objective. Despite promising results compared to traditional QD algorithms, QD-Meta has yet to be compared to state-of-the-art behaviour space automation methods such as Centroidal Voronoi Tessellations Multi-dimensional Archive of Phenotypic Elites Algorithm (CVT-MAP-Elites) and Autonomous Robots Realising their Abilities (AURORA). This paper performs an empirical study of QD-Meta on function optimisation and multilegged robot locomotion benchmarks. Results demonstrate that QD-Meta archives provide improved average performance and faster adaptation to a priori unknown changes to the environment when compared to CVT-MAP-Elites and AURORA. A qualitative analysis shows how the resulting archives are tailored to the meta-objectives provided by the end-user.
翻译:质量- 差异( QD) 算法在行为上演化多样和高性能的解决方案。 要阐明行为空间的精英解决方案, QD 算法需要定义合适的行为空间。 如果行为空间是高维的, 需要适当的维度减少技术来保持有限的行为定位。 虽然当前自动化行为空间的方法侧重于改变几何或不受监督的学习, 但仍需要将行为多样性与最终用户指定的特定元目标进行定制。 在新出现的QD Met- 变换框架或短期的QD- Meta 框架中, 需要定义合适的行为空间。 如果行为空间是高维度的, 则需要一种适当的维度降低行为空间的方法来保持有限的行为定位。 尽管当前自动化行为空间的方法侧重于改变几何测法或不受监督的学习, 但QD- Meta 仍然需要将行为多样性与最新行为空间自动化方法进行比较, 如Centrial Voronioi- 多重性能化的QD- QQ- Developyalalal- deal- deal- Alimologyalal- Ali- Alimologyal- Ali- Ali- MAULial- 和ALial- Ali- Ali- Ali- Ali- Ali- Ali- Ali- Acal- Acal- Acal- labal- Acal- Acal- Acal- la- Ax- la- Ax- labal- Acal- lad- Acal- Acal- Acal- Acal- Acal- Acal- Ad- Ad- Ad- Acal- Ad- Ax- Ax- Ax- Ax- Ad- Ad- Ad- Ad- Ad- AD- Ad- AD- Adal- Acal- Acal- Adal- Adal- AMA- Acal- Acal- AMA- AMA- AMA- Ad- AMAM- AD- AMA- AD- AMA- AMA- AD- ADMAMAM- ADM- AD- AD- C- AD- AD-