This paper presents a new approach for batch Bayesian Optimization (BO) called Thompson Sampling-Regret to Sigma Ratio directed sampling (TS-RSR), where we sample a new batch of actions by minimizing a Thompson Sampling approximation of a regret to uncertainty ratio. Our sampling objective is able to coordinate the actions chosen in each batch in a way that minimizes redundancy between points whilst focusing on points with high predictive means or high uncertainty. We provide high-probability theoretical guarantees on the regret of our algorithm. Finally, numerically, we demonstrate that our method attains state-of-the-art performance on a range of challenging synthetic and realistic test functions, where it outperforms several competitive benchmark batch BO algorithms.
翻译:暂无翻译