A graphical model is a multivariate (potentially very high dimensional) probabilistic model, which is formed by combining lower dimensional components. Inference (computation of conditional probabilities) is based on message passing algorithms that utilize conditional independence structures. In graphical models for discrete variables with finite state spaces, there is a fundamental problem in high dimensions: A discrete distribution is represented by a table of values, and in high dimensions such tables can become prohibitively large. In inference, such tables must be multiplied which can lead to even larger tables. The sparta package meets this challenge by implementing methods that efficiently handles multiplication and marginalization of sparse tables. The package was written in the R programming language and is freely available from the Comprehensive R Archive Network (CRAN). The companion package jti, also on CRAN, was developed to showcase the potential of sparta in connection to the Junction Tree Algorithm. We show, that jti is able to handle highly complex graphical models which are otherwise infeasible due to lack of computer memory, using sparta as a backend for table operations.


翻译:图形模型是一种多变量( 可能非常高的维度) 概率模型, 由低维组件组合而成。 推断( 有条件概率的计算) 是基于使用有条件独立结构的信息传递算法。 在用于使用有条件独立结构的离散变量的图形模型中, 存在一个高维的根本问题: 一个离散分布以数值表表示, 在高维中, 这种表格会变得令人望而却步。 推断, 这种表格必须乘以能够导致更大型表格的极复杂的图形模型。 斯巴达软件包通过采用高效处理稀薄表格的倍增和边缘化的方法来应对这一挑战。 软件包是用 R 编程语言撰写的, 并且可以免费从 综合 R 档案网络 ( CRAN) 中获取。 配套的软件包jti 也在 CRAN 上开发, 以展示与 Junction 树 Algorithm 相关的双向部分的潜力 。 我们显示, jti 能够处理非常复杂的图形模型, 这些模型本来不可行, 是因为缺少计算机记忆,, 使用 使用 片段作为表格操作的后端。

0
下载
关闭预览

相关内容

《图形模型》是国际公认的高评价的顶级期刊,专注于图形模型的创建、几何处理、动画和可视化,以及它们在工程、科学、文化和娱乐方面的应用。GMOD为其读者提供了经过彻底审查和精心挑选的论文,这些论文传播令人兴奋的创新,传授严谨的理论基础,提出健壮和有效的解决方案,或描述各种主题中的雄心勃勃的系统或应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/cvgip/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt
专知会员服务
101+阅读 · 2020年6月11日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员