A graphical model is a multivariate (potentially very high dimensional) probabilistic model, which is formed by combining lower dimensional components. Inference (computation of conditional probabilities) is based on message passing algorithms that utilize conditional independence structures. In graphical models for discrete variables with finite state spaces, there is a fundamental problem in high dimensions: A discrete distribution is represented by a table of values, and in high dimensions such tables can become prohibitively large. In inference, such tables must be multiplied which can lead to even larger tables. The sparta package meets this challenge by implementing methods that efficiently handles multiplication and marginalization of sparse tables. The package was written in the R programming language and is freely available from the Comprehensive R Archive Network (CRAN). The companion package jti, also on CRAN, was developed to showcase the potential of sparta in connection to the Junction Tree Algorithm. We show, that jti is able to handle highly complex graphical models which are otherwise infeasible due to lack of computer memory, using sparta as a backend for table operations.
翻译:图形模型是一种多变量( 可能非常高的维度) 概率模型, 由低维组件组合而成。 推断( 有条件概率的计算) 是基于使用有条件独立结构的信息传递算法。 在用于使用有条件独立结构的离散变量的图形模型中, 存在一个高维的根本问题: 一个离散分布以数值表表示, 在高维中, 这种表格会变得令人望而却步。 推断, 这种表格必须乘以能够导致更大型表格的极复杂的图形模型。 斯巴达软件包通过采用高效处理稀薄表格的倍增和边缘化的方法来应对这一挑战。 软件包是用 R 编程语言撰写的, 并且可以免费从 综合 R 档案网络 ( CRAN) 中获取。 配套的软件包jti 也在 CRAN 上开发, 以展示与 Junction 树 Algorithm 相关的双向部分的潜力 。 我们显示, jti 能够处理非常复杂的图形模型, 这些模型本来不可行, 是因为缺少计算机记忆,, 使用 使用 片段作为表格操作的后端。