Machine learning (ML) models are widely used in many important domains. For efficiently processing these computational- and memory-intensive applications, tensors of these over-parameterized models are compressed by leveraging sparsity, size reduction, and quantization of tensors. Unstructured sparsity and tensors with varying dimensions yield irregular computation, communication, and memory access patterns; processing them on hardware accelerators in a conventional manner does not inherently leverage acceleration opportunities. This paper provides a comprehensive survey on the efficient execution of sparse and irregular tensor computations of ML models on hardware accelerators. In particular, it discusses enhancement modules in the architecture design and the software support; categorizes different hardware designs and acceleration techniques and analyzes them in terms of hardware and execution costs; analyzes achievable accelerations for recent DNNs; highlights further opportunities in terms of hardware/software/model co-design optimizations (inter/intra-module). The takeaways from this paper include: understanding the key challenges in accelerating sparse, irregular-shaped, and quantized tensors; understanding enhancements in accelerator systems for supporting their efficient computations; analyzing trade-offs in opting for a specific design choice for encoding, storing, extracting, communicating, computing, and load-balancing the non-zeros; understanding how structured sparsity can improve storage efficiency and balance computations; understanding how to compile and map models with sparse tensors on the accelerators; understanding recent design trends for efficient accelerations and further opportunities.


翻译:在许多重要领域广泛使用机器学习(ML)模型。为了高效处理这些计算和记忆密集型应用程序的计算和记忆密集型应用,这些超分度模型的变压器通过调控加速度、缩小体积和分化等手段压缩。不结构的聚变和不同尺寸的变压器产生不规则的计算、通信和内存访问模式;用常规方式处理硬件加速器的这些模型本身不能利用加速速度机会。本文对在硬件加速器方面高效执行微小和不规则的微调计算提供了全面调查。特别是,它讨论了结构设计和软件支持中的强化模块;对不同的硬件设计和加速技术进行了分类,并在硬件和执行成本方面进行了分析;对近期DNNS的可实现的加速模式进行了分析;强调了硬件/软件/模型联合设计优化(间/内部模块)方面的更多机会。本文的取自包括:了解在加速稀释、不正规和不正规的加速度模型方面的主要挑战;理解度;了解最新加速理解系统在支持其高效的储存、升级的计算过程中如何改进成本;分析用于进行具体的计算;进行具体的计算和升级的精度分析。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
28+阅读 · 2021年9月18日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员