The framework outlined in [arXiv:2010.13024] provides an approximation algorithm for computing Nash equilibria of normal form games. Since NASH is a well-known PPAD-complete problem, this framework has potential applications to other $PPAD$ problems. The correctness of this framework has been empirically validated on 4 well-studied 2x2 games: Prisoner's Dilemma, Stag Hunt, Battle, and Chicken. In this paper, we provide the asymptotic time-complexities for these methods and in particular, verify that for 2x2 games the worst-case complexity is linear in the number of actions an agent can choose from.
翻译:[arXiv:2010.13024] 中概述的框架为计算普通形式游戏的Nash平衡提供了一种近似算法。由于NASH是一个众所周知的PPAD完整的问题,这个框架有可能适用于其他PPAD$问题。这个框架的正确性在4个经过充分研究的2x2游戏中得到了经验验证:囚犯的Dilemma、Stag Hunt、Tattle、Tattle and Sicken。在本文中,我们提供了这些方法的零时间复杂性,特别是核实对于2x2游戏来说,最坏的复杂程度是代理人可以选择的行动数量的线性。