We study the use of amortized optimization to predict optimal transport (OT) maps from the input measures, which we call Meta OT. This helps repeatedly solve similar OT problems between different measures by leveraging the knowledge and information present from past problems to rapidly predict and solve new problems. Otherwise, standard methods ignore the knowledge of the past solutions and suboptimally re-solve each problem from scratch. Meta OT models surpass the standard convergence rates of log-Sinkhorn solvers in the discrete setting and convex potentials in the continuous setting. We improve the computational time of standard OT solvers by multiple orders of magnitude in discrete and continuous transport settings between images, spherical data, and color palettes. Our source code is available at http://github.com/facebookresearch/meta-ot.
翻译:我们研究如何利用分解优化来预测来自输入措施的最佳运输地图(我们称之为Meta OT),这通过利用过去问题产生的知识和信息,迅速预测和解决新的问题,帮助反复解决不同措施之间的类似OT问题;否则,标准方法忽视了对过去解决办法的了解,从头到尾再解决每个问题。Meta OT模型超过了离散设置和连续设置中圆-Sinkhorn求解器的标准汇合率。我们通过图像、球体数据和彩色调色调色盘之间的离散和连续传输环境的多个数量级改进了标准OT求解器的计算时间。我们的源代码可在http://github.com/facebookresearch/meta-ot上查阅。