We adapt our light Dialectica interpretation to usual and light modal formulas (with universal quantification on boolean and natural variables) and prove it sound for a non-standard modal arithmetic based on Goedel's T and classical S4. The range of this light modal Dialectica is the usual (non-modal) classical Arithmetic in all finite types (with booleans); the propositional kernel of its domain is Boolean and not S4. The `heavy' modal Dialectica interpretation is a new technique, as it cannot be simulated within our previous light Dialectica. The synthesized functionals are at least as good as before, while the translation process is improved. Through our modal Dialectica, the existence of a realizer for the defining axiom of classical S5 reduces to the Drinking Principle (cf. Smullyan).
翻译:我们把我们的光对立体解释适应于常规和光模式公式(对布林和自然变量进行普遍量化),并证明它对于基于Goedel的T和古典S4的非标准模式算术是合情合理的。这种光模式对立体的广度是所有有限类型(有布林安的)的常规(非现代)古典亚理学;其域的标语内核是Boolean而不是S4。“重度”模型对立体解释是一种新技术,因为它不能在我们以前的光中模拟。合成功能至少和以前一样好,而翻译过程则得到改善。通过我们的模型对立体,一个定义经典S5轴的实现者的存在会降低到饮酒原则(参见Smullyan ) 。