For large-scale scientific simulations, it is expensive to store raw simulation results to perform post-analysis. To minimize expensive I/O, "in-situ" analysis is often used, where analysis applications are tightly coupled with scientific simulations and can access and process the simulation results in memory. Increasingly, scientific domains employ Big Data approaches to analyze simulations for scientific discoveries. However, it remains a challenge to organize, transform, and transport data at scale between the two semantically different ecosystems (HPC and Cloud systems). In an effort to address these challenges, we design and implement the ElasticBroker software framework, which bridges HPC and Cloud applications to form an "in-situ" scientific workflow. Instead of writing simulation results to parallel file systems, ElasticBroker performs data filtering, aggregation, and format conversions to close the gap between an HPC ecosystem and a distinct Cloud ecosystem. To achieve this goal, ElasticBroker reorganizes simulation snapshots into continuous data streams and send them to the Cloud. In the Cloud, we deploy a distributed stream processing service to perform online data analysis. In our experiments, we use ElasticBroker to setup and execute a cross-ecosystem scientific workflow, which consists of a parallel computational fluid dynamics (CFD) simulation running on a supercomputer, and a parallel dynamic mode decomposition (DMD) analysis application running in a Cloud computing platform. Our results show that running scientific workflows consisting of decoupled HPC and Big Data jobs in their native environments with ElasticBroker, can achieve high quality of service, good scalability, and provide high-quality analytics for ongoing simulations.
翻译:对于大规模科学模拟而言,存储原始模拟结果以进行后分析的成本是昂贵的。为了尽量减少昂贵的 I/O, 经常使用“ 现场” 分析, 分析应用与科学模拟紧密结合, 并能够获取和处理模拟结果的记忆。 科学领域越来越多地使用“ 大数据” 方法来分析科学发现模拟。 然而, 要在两个不同的地震生态系统( HPC 和 Cloud 系统) 之间大规模地组织、 转换和运输数据, 仍然是个挑战。 为了应对这些挑战, 我们设计并实施了 ElasticBroker 软件框架, 将 HPC 和 Cloud 应用程序连接到“ 现场” 科学工作流程中。 在我们的实验中, ElasticicBroker 进行数据过滤、汇总和格式转换,以缩小 HPC 生态系统和不同的云层生态系统之间的差距。 要实现这一目标, Elasticicroker 将模拟照片缩影到连续的数据流中, 我们使用分布式的流处理服务来进行在线数据分析。 在运行的实验中, 我们使用 Elasticrodeal drical 平台的运行中, 我们使用一个运行的滚动的滚动分析, 和滚动的系统 运行中, 运行中一个运行的滚动的滚动的滚动的滚动的滚动的逻辑环境。