To represent the biological variability of clinical neuroimaging populations, it is vital to be able to combine data across scanners and studies. However, different MRI scanners produce images with different characteristics, resulting in a domain shift known as the `harmonisation problem'. Additionally, neuroimaging data is inherently personal in nature, leading to data privacy concerns when sharing the data. To overcome these barriers, we propose an Unsupervised Source-Free Domain Adaptation (SFDA) method, SFHarmony. Through modelling the imaging features as a Gaussian Mixture Model and minimising an adapted Bhattacharyya distance between the source and target features, we can create a model that performs well for the target data whilst having a shared feature representation across the data domains, without needing access to the source data for adaptation or target labels. We demonstrate the performance of our method on simulated and real domain shifts, showing that the approach is applicable to classification, segmentation and regression tasks, requiring no changes to the algorithm. Our method outperforms existing SFDA approaches across a range of realistic data scenarios, demonstrating the potential utility of our approach for MRI harmonisation and general SFDA problems. Our code is available at \url{https://github.com/nkdinsdale/SFHarmony}.
翻译:为了表示临床神经影像人群的生物变异性,能够合并来自扫描仪和研究的数据是至关重要的。然而,不同的MRI扫描仪产生具有不同特征的影像,导致所谓的“协调问题”的域漂移。此外,神经影像数据天生是具有个人性质的,因此要共享数据时存在数据隐私问题。为了克服这些障碍,我们提出了一种无监督的无源域自适应(SFDA)方法SFHarmony。通过将影像特征建模为高斯混合模型,并最小化源特征与目标特征之间的调整巴氏距离,我们可以创建一个模型,在没有适应源数据或目标标签的情况下,为目标数据表现良好,同时具有跨数据域的共享特征表示。我们在模拟和真实的领域漂移上展示了我们方法的性能,显示该方法适用于分类、分割和回归任务,不需要改变算法。我们的方法在一系列现实数据场景中优于现有的无源域自适应方法,证明了我们的方法在MRI协调和一般的无源域自适应问题中的潜在应用价值。我们的代码可在\url{https://github.com/nkdinsdale/SFHarmony}获得。