We propose an efficient once-for-all budgeted pruning framework (OFARPruning) to find many compact network structures close to winner tickets in the early training stage considering the effect of input resolution during the pruning process. In structure searching stage, we utilize cosine similarity to measure the similarity of the pruning mask to get high-quality network structures with low energy and time consumption. After structure searching stage, our proposed method randomly sample the compact structures with different pruning rates and input resolution to achieve joint optimization. Ultimately, we can obtain a cohort of compact networks adaptive to various resolution to meet dynamic FLOPs constraints on different edge devices with only once training. The experiments based on image classification and object detection show that OFARPruning has a higher accuracy than the once-for-all compression methods such as US-Net and MutualNet (1-2% better with less FLOPs), and achieve the same even higher accuracy as the conventional pruning methods (72.6% vs. 70.5% on MobileNetv2 under 170 MFLOPs) with much higher efficiency.
翻译:我们建议一个高效的一次性预算运行框架( OFARPruning ), 以便在早期培训阶段找到许多接近优胜者门票的紧紧网状网络结构, 同时考虑到在运行过程中投入分辨率的影响。 在结构搜索阶段, 我们利用孔径镜的相似性来测量裁剪面罩的相似性, 以较低的能量和时间消耗量获得高质量的网络结构结构。 在结构搜索阶段之后, 我们提出的方法随机抽样了紧凑结构, 以不同的裁剪率和输入分辨率来实现联合优化 。 最终, 我们可以得到一组适应各种分辨率的紧凑网络, 以满足不同边缘装置的动态 FLOP 限制, 仅培训一次。 基于图像分类和对象探测的实验显示, 远比US-Net 和 Mutal Net ( 1%- 2 以上, 使用较少 FLOPs ) 等一次性压缩方法的精确度更高, 并且达到与常规的裁剪裁方法( 170 MFLLOPs 下的移动Netv2 70. 70.5% ) 相同的精度。