In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We outline four families of time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods, and detail their taxonomy. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with 6 different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications.
翻译:近些年来,深层人工神经网络在模式识别方面取得了许多成功,其中部分成功可归因于依赖大数据来增加一般化。然而,在时间序列识别领域,许多数据集往往非常小。解决这一问题的方法之一是利用数据增强。在本文件中,我们调查时间序列的数据增强技术,并将其应用于神经网络的时间序列分类。我们概述了四个时间序列数据增强系列系列,包括基于变换的方法、模式混合、基因模型和分解方法,以及详细的分类学。此外,我们从经验上评估了128个时间序列分类数据集的12个时间序列数据增强方法,包括6种不同类型的神经网络。通过结果,我们可以分析每种数据增强方法的特点、优缺点和建议。这项调查旨在帮助选择神经网络应用的时间序列数据增强。