In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We outline four families of time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods, and detail their taxonomy. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with 6 different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications.


翻译:近些年来,深层人工神经网络在模式识别方面取得了许多成功,其中部分成功可归因于依赖大数据来增加一般化。然而,在时间序列识别领域,许多数据集往往非常小。解决这一问题的方法之一是利用数据增强。在本文件中,我们调查时间序列的数据增强技术,并将其应用于神经网络的时间序列分类。我们概述了四个时间序列数据增强系列系列,包括基于变换的方法、模式混合、基因模型和分解方法,以及详细的分类学。此外,我们从经验上评估了128个时间序列分类数据集的12个时间序列数据增强方法,包括6种不同类型的神经网络。通过结果,我们可以分析每种数据增强方法的特点、优缺点和建议。这项调查旨在帮助选择神经网络应用的时间序列数据增强。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
1+阅读 · 2021年3月29日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员