Requirements quality literature abounds with publications presenting artifacts, such as data sets and tools. However, recent systematic studies show that more than 80% of these artifacts have become unavailable or were never made public, limiting reproducibility and reusability. In this work, we report on an attempt to recover those artifacts. To that end, we requested corresponding authors of unavailable artifacts to recover and disclose them according to open science principles. Our results, based on 19 answers from 35 authors (54% response rate), include an assessment of the availability of requirements quality artifacts and a breakdown of authors' reasons for their continued unavailability. Overall, we improved the availability of seven data sets and seven implementations.


翻译:要求质量文献中充满了展示数据集和工具等文物的出版物。然而,最近的系统研究表明,这些文物中超过80%变得不可用或从未公开,限制了再现性和可重用性。在这项工作中,我们尝试恢复这些文物。为此,我们请求不可用文物的对应作者根据开放科学原则恢复并公开它们。我们的结果基于35个作者的19个答案(响应率为54%),包括对需求质量文物可用性的评估以及作者继续不可用的原因的分析。总的来说,我们提高了七个数据集和七个实现的可用性。

0
下载
关闭预览

相关内容

在计算机科学中,再现性是指只要程序执行时的环境和初始条件相同,当程序重复执行时,不论它是从头到尾不停顿地执行,还是“停停走走”地执行,都将获得相同的结果。再现性是程序是否可以并行执行重要的准则之一。广义上,再现性:在改变了的测量条件下,对同一被测量的测量结果之间的一致性,称为测量结果的再现性。再现性又称为复现性、重现性。
【2022新书】Python数据分析第三版,579页pdf
专知会员服务
244+阅读 · 2022年8月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员