We consider the sequential anomaly detection problem in the one-class setting when only the anomalous sequences are available and propose an adversarial sequential detector by solving a minimax problem to find an optimal detector against the worst-case sequences from a generator. The generator captures the dependence in sequential events using the marked point process model. The detector sequentially evaluates the likelihood of a test sequence and compares it with a time-varying threshold, also learned from data through the minimax problem. We demonstrate our proposed method's good performance using numerical experiments on simulations and proprietary large-scale credit card fraud datasets. The proposed method can generally apply to detecting anomalous sequences.
翻译:我们考虑在一类情况下只有异常序列可用的顺序异常检测问题,并提出了一种对抗性的顺序检测器,通过解决最小最大化问题来寻找一个最优检测器,以抵御生成器的最坏情况序列。生成器使用标记点过程模型来捕捉顺序事件的相关性。检测器顺序评估测试序列的可能性,并与从数据中通过最小最大化问题学习的时变阈值进行比较。我们通过数值实验在模拟和专有的大规模信用卡欺诈数据集上展示了我们提出的方法的优异性能。所提出的方法通常适用于检测异常序列。