In open-retrieval conversational machine reading (OR-CMR) task, machines are required to do multi-turn question answering given dialogue history and a textual knowledge base. Existing works generally utilize two independent modules to approach this problem's two successive sub-tasks: first with a hard-label decision making and second with a question generation aided by various entailment reasoning methods. Such usual cascaded modeling is vulnerable to error propagation and prevents the two sub-tasks from being consistently optimized. In this work, we instead model OR-CMR as a unified text-to-text task in a fully end-to-end style. Experiments on the OR-ShARC dataset show the effectiveness of our proposed end-to-end framework on both sub-tasks by a large margin, achieving new state-of-the-art results. Further ablation studies support that our framework can generalize to different backbone models.
翻译:在开放检索机器读取(OR-CMR)任务中,机器必须完成多回合问题,回答对话历史和文本知识库。现有工作通常使用两个独立模块来应对这一问题的连续两个子任务:第一个是硬标签决策,第二个是由各种要求推理方法协助的问题生成。这种通常的级联模型容易发生错误传播,防止两个子任务得到一致的优化。在这项工作中,我们把OR-CMR模型作为完全端到端风格的统一文本到文本任务。对OR-SHARRC数据集的实验表明,我们提议的两个子任务端到端框架在大边缘上的有效性,实现了新的最新结果。进一步的对比研究支持我们的框架可以向不同的主干模型推广。