The past few years have seen a surge of work on fairness in social choice literature. This paper initiates the study of finding a stable many-to-one matching, under cardinal valuations, while satisfying fairness among the agents on either side. Specifically, motivated by several real-world settings, we focus on leximin optimal fairness and seek leximin optimality over many-to-one stable matchings. We first consider the special case of ranked valuations where all agents on each side have the same preference orders or rankings over the agents on the other side (but not necessarily the same valuations). For this special case, we provide a complete characterisation of the space of stable matchings. This leads to FaSt, a novel and efficient algorithm to compute a leximin optimal stable matching under ranked isometric valuations (where, for each pair of agents, the valuation of one agent for the other is the same). The running time of FaSt is linear in the number of edges. Building upon FaSt, we present an efficient algorithm, FaSt-Gen, that finds the leximin optimal stable matching for ranked but otherwise unconstrained valuations. The running time of FaSt-Gen is quadratic in the number of edges. We next establish that, in the absence of rankings, finding a leximin optimal stable matching is NP-Hard, even under isometric valuations. In fact, when additivity and non-negativity are the only assumptions on the valuations, we show that, unless P=NP, no efficient polynomial factor approximation is possible. When additivity is relaxed to submodularity, we find that not even an exponential approximation is possible.
翻译:过去几年中,社会选择文献的公平性工作急剧增加。 本文启动了一项研究, 在基本估值下找到一个稳定的多对一匹配, 同时满足双方代理人之间的公平性。 具体地说, 在几个真实世界设置的驱动下, 我们集中关注Leximin 最佳公平性, 并寻求相对于许多对一稳定匹配的地契优化性。 我们首先考虑等级估值的特殊案例, 每一方所有代理人都拥有与另一方代理人相同的优先排序或排序( 但不一定是相同的估值 ) 。 对于这个特殊案例, 我们提供了稳定匹配空间的完整特征。 这导致 FaSt, 一个新颖而高效的算法, 在排序下, 最稳定的匹配值( 每对每对一对代理人来说, 一个代理人的估值是相同的 ) 。 FaStt 的运行时间是线性, 边际数是可能的。 在 FaStality上, 我们提出一个高效的运算法, 并且我们提出一个高效的硬度算法, 在排序上找到一个最稳的基点, 平的基点上, 除非是平的排序, 。