This paper presents a real-time 3D LiDAR mapping framework based on global matching cost minimization. The proposed method constructs a factor graph that directly minimizes matching costs between frames over the entire map, unlike pose graph-based approaches that minimize errors in the pose space. For real-time global matching cost minimization, we use a voxel data association-based GICP matching cost factor that is able to fully leverage GPU parallel processing. The combination of the matching cost factor and GPU computation enables constraint of the relative pose between frames with a small overlap and creation of a densely connected factor graph. The mapping process is managed based on a voxel-based overlap metric that can quickly be evaluated on a GPU. We incorporate the proposed method with an external loop detection method in order to help the voxel-based matching cost factors to avoid convergence in a local solution. The experimental result on the KITTI dataset shows that the proposed approach improves the estimation accuracy of long trajectories.
翻译:本文展示了一个基于全球匹配成本最小化的实时 3D LiDAR 绘图框架。 拟议的方法构建了一个要素图, 直接将整个地图各框架之间的匹配成本最小化, 不同于基于图形的方法, 将构成空间的错误最小化。 对于实时全球匹配成本最小化, 我们使用一个基于 voxel 数据的基于 voxel 的GICP 匹配成本系数, 能够充分利用 GPU 平行处理。 匹配成本系数和 GPU 计算相结合, 能够限制框架之间的相对构成, 且有少量重叠和创建一个紧密连接系数图。 映射进程以基于 voxel 的重叠指标为基础, 可以在 GPU 上快速评估。 我们将拟议方法与外部环探测方法整合, 以帮助基于 voxel 的匹配成本系数避免本地解决方案的趋同。 KITTI 数据集的实验结果表明, 拟议的方法提高了长轨迹的估算精度。