Preordered semialgebras and semirings are two kinds of algebraic structures occurring in real algebraic geometry frequently and usually play important roles therein. They have many interesting and promising applications in the fields of real algebraic geometry, probability theory, theoretical computer science, quantum information theory, \emph{etc.}. In these applications, Strassen's Vergleichsstellensatz and its generalized versions, which are analogs of those Positivstellens\"atze in real algebraic geometry, play important roles. While these Vergleichsstellens\"atze accept only a commutative setting (for the semirings in question), we prove in this paper a noncommutative version of one of the generalized Vergleichsstellens\"atze proposed by Fritz [\emph{Comm. Algebra}, 49 (2) (2021), pp. 482-499]. The most crucial step in our proof is to define the semialgebra of the fractions of a noncommutative semialgebra, which generalizes the definitions in the literature. Our new Vergleichsstellensatz characterizes the relaxed preorder on a noncommutative semialgebra induced by all monotone homomorphisms to $\mathbb{R}_+$ by three other equivalent conditions on the semialgebra of its fractions equipped with the derived preorder, which may result in more applications in the future.
翻译:预定半星镜和半星体是两种代数结构的类比。 它们经常出现在真实的代数几何学中, 通常在其中扮演着重要的角色。 虽然这些 Vergleichsstellens\"atze"在真正的代数几何学、 概率理论、 理论计算机科学理论、 量子信息理论、 emph{etc.} 领域有许多有趣和有希望的应用。 在这些应用中, Strassen's Vergleichsstellensatz 及其通用版本, 它们是真实的代数几何几何几何学中的近似值, 并扮演着重要的角色。 虽然这些 Vergleichsstellens\"atze "只接受一个通融化的设置( 对于所涉的半星系而言), 我们在本文中证明一个非对通用的 Vergleichstellensarens\\"atze的不兼容的版本, 由Frifritz[meph{ recobra}, 49(2) (2021,, pp. 482- 49_499) 。 我们证据中最重要的步骤中, 最重要的一步是用来定义非等等等等等数的分数, 。