This paper studies using Vision Transformers (ViT) in class incremental learning. Surprisingly, naive application of ViT to replace convolutional neural networks (CNNs) results in performance degradation. Our analysis reveals three issues of naively using ViT: (a) ViT has very slow convergence when class number is small, (b) more bias towards new classes is observed in ViT than CNN-based models, and (c) the proper learning rate of ViT is too low to learn a good classifier. Base on this analysis, we show these issues can be simply addressed by using existing techniques: using convolutional stem, balanced finetuning to correct bias, and higher learning rate for the classifier. Our simple solution, named ViTIL (ViT for Incremental Learning), achieves the new state-of-the-art for all three class incremental learning setups by a clear margin, providing a strong baseline for the research community. For instance, on ImageNet-1000, our ViTIL achieves 69.20% top-1 accuracy for the protocol of 500 initial classes with 5 incremental steps (100 new classes for each), outperforming LUCIR+DDE by 1.69%. For more challenging protocol of 10 incremental steps (100 new classes), our method outperforms PODNet by 7.27% (65.13% vs. 57.86%).


翻译:令人惊讶的是,我们的分析揭示了三个天真的使用VIT的问题。 我们的分析揭示了三个使用VIT的天真问题:(a) VIT在班数小的时候会非常缓慢地趋同;(b) VIT比CNN的模型更加偏向新班,(c) VIT的适当学习率太低,无法学习优秀的分类者。根据这项分析,我们展示了这些问题,只要使用现有技术就可以简单地解决这些问题:使用Culationral 干、平衡的微调以纠正偏向和高的叙级员学习率。我们称为VITL(VIT用于递增学习)的简单解决方案在班数小的时候会非常缓慢地趋同;(b) VIT比有CNN的模型对新班的偏向性更强;(c) Viet的正确学习率太低,无法学习一个良好的分类者。例如,在图像网1000上,我们的VTIL为500个初始班的校规程达到69.20%的顶级,有5个递增步骤(每班100个新班),比LUCIR+DDDE10级更具有挑战性的方法为100%。

1
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
283+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
22+阅读 · 2022年2月24日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
283+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员