Existing neural ranking models follow the text matching paradigm, where document-to-query relevance is estimated through predicting the matching score. Drawing from the rich literature of classical generative retrieval models, we introduce and formalize the paradigm of deep generative retrieval models defined via the cumulative probabilities of generating query terms. This paradigm offers a grounded probabilistic view on relevance estimation while still enabling the use of modern neural architectures. In contrast to the matching paradigm, the probabilistic nature of generative rankers readily offers a fine-grained measure of uncertainty. We adopt several current neural generative models in our framework and introduce a novel generative ranker (T-PGN), which combines the encoding capacity of Transformers with the Pointer Generator Network model. We conduct an extensive set of evaluation experiments on passage retrieval, leveraging the MS MARCO Passage Re-ranking and TREC Deep Learning 2019 Passage Re-ranking collections. Our results show the significantly higher performance of the T-PGN model when compared with other generative models. Lastly, we demonstrate that exploiting the uncertainty information of deep generative rankers opens new perspectives to query/collection understanding, and significantly improves the cut-off prediction task.
翻译:现有神经排序模型遵循文本匹配模式,通过预测匹配得分来估计文档到拼取的相关性。根据古典基因检索模型的丰富文献,我们采用并正式确定通过累积概率生成查询术语的累积概率定义的深基因检索模型的范例。这一范例对相关性估算提供了有根据的概率性观点,同时仍然能够使用现代神经结构。与匹配模式不同,基因排序器的概率性能很容易提供细微的不确定性度量度。我们在我们的框架中采用一些当前的神经基因化模型,并引入一个新的基因化排序器(T-PGN),将变异器的编码能力与指针生成网络模型结合起来。我们利用MS MARCO 路过分再排序和TREC 深学习 2019 路程再排序,对通道检索进行了广泛的评价实验。我们的结果显示,与其它基因化模型相比,T-PGN模型的性能表现要高得多。最后,我们证明,利用深基因排序器的不确定性信息为查询/采集任务预测开辟了新的视角,并大大改进了任务预测。