Graph analytics can lead to better quantitative understanding and control of complex networks, but traditional methods suffer from high computational cost and excessive memory requirements associated with the high-dimensionality and heterogeneous characteristics of industrial size networks. Graph embedding techniques can be effective in converting high-dimensional sparse graphs into low-dimensional, dense and continuous vector spaces, preserving maximally the graph structure properties. Another type of emerging graph embedding employs Gaussian distribution-based graph embedding with important uncertainty estimation. The main goal of graph embedding methods is to pack every node's properties into a vector with a smaller dimension, hence, node similarity in the original complex irregular spaces can be easily quantified in the embedded vector spaces using standard metrics. The generated nonlinear and highly informative graph embeddings in the latent space can be conveniently used to address different downstream graph analytics tasks (e.g., node classification, link prediction, community detection, visualization, etc.). In this Review, we present some fundamental concepts in graph analytics and graph embedding methods, focusing in particular on random walk-based and neural network-based methods. We also discuss the emerging deep learning-based dynamic graph embedding methods. We highlight the distinct advantages of graph embedding methods in four diverse applications, and present implementation details and references to open-source software as well as available databases in the Appendix for the interested readers to start their exploration into graph analytics.


翻译:图形分析分析可以导致对复杂网络有更好的数量理解和控制,但传统方法却受到与工业规模网络的高度和多元性特点相关的高计算成本和过度记忆要求的影响。 图像嵌入技术可以有效地将高维稀释图形转换成低维、稠密和连续的矢量空间,最大限度地保护图形结构特性。 另一种正在形成的图形嵌入方式采用高斯分布图嵌入方式嵌入重要不确定性估计。 图嵌入方法的主要目标是将每个节点的特性包装成一个容量较小的矢量,因此,原始复杂异常空间的节点相似性可以很容易地在嵌入的矢量空间使用标准指标进行量化。 生成的非线性和高度信息化的图表嵌入于潜入的矢量空间,可以方便地用于处理不同的下游图形分析任务(例如节点分类、链接预测、社区检测、可视化等) 。 在这次审查中,我们在图表解析和图形嵌入方法中提出了一些基本概念,特别侧重于随机行和线性网络化的异常相似性空间空间。 我们还讨论正在形成的非线状网络化的图表应用,以不同的深层次的图表格式化的模型化的模型应用,作为不同的模型的模型化的模型的模型的模型的模型的模型的模型化方法。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图表示学习Graph Embedding综述
AINLP
34+阅读 · 2020年5月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
49+阅读 · 2020年12月16日
Tutorial on NLP-Inspired Network Embedding
Arxiv
7+阅读 · 2019年10月16日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
图表示学习Graph Embedding综述
AINLP
34+阅读 · 2020年5月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员