We study two questions related to competition on the OTC CDS market using data collected as part of the EMIR regulation. First, we study the competition between central counterparties through collateral requirements. We present models that successfully estimate the initial margin requirements. However, our estimations are not precise enough to use them as input to a predictive model for CCP choice by counterparties in the OTC market. Second, we model counterpart choice on the interdealer market using a novel semi-supervised predictive task. We present our methodology as part of the literature on model interpretability before arguing for the use of conditional entropy as the metric of interest to derive knowledge from data through a model-agnostic approach. In particular, we justify the use of deep neural networks to measure conditional entropy on real-world datasets. We create the $\textit{Razor entropy}$ using the framework of algorithmic information theory and derive an explicit formula that is identical to our semi-supervised training objective. Finally, we borrow concepts from game theory to define $\textit{top-k Shapley values}$. This novel method of payoff distribution satisfies most of the properties of Shapley values, and is of particular interest when the value function is monotone submodular. Unlike classical Shapley values, top-k Shapley values can be computed in quadratic time of the number of features instead of exponential. We implement our methodology and report the results on our particular task of counterpart choice. Finally, we present an improvement to the $\textit{node2vec}$ algorithm that could for example be used to further study intermediation. We show that the neighbor sampling used in the generation of biased walks can be performed in logarithmic time with a quasilinear time pre-computation, unlike the current implementations that do not scale well.
翻译:我们用作为EMIR 监管的一部分收集的数据来研究与OTC CDS 市场竞争有关的两个问题。 首先, 我们研究中央对应方之间通过抵押品要求的竞争。 我们展示了成功估算初始差值要求的模型。 但是, 我们的估算不够精确, 不足以作为OTC 市场对应方选择 CCP 的预测模型的投入。 其次, 我们使用新型半监督的预测任务来模拟对冲市场的选择。 我们展示了我们关于模型可解释性的文献中我们的方法, 在争论使用有条件的变价作为通过模型认知法方法从数据中获取知识的衡量标准之前, 我们展示了这些模型。 特别是, 我们用深度的神经网络来测量真实世界数据集中的定值。 我们用 $ textitle{Razor enpy} 创建了对间交易的对应方选择, 并且我们用一个与半监督性培训目标相同的明确公式。 最后, 我们借用游戏理论来定义 $\ text- Shaple 值的度值的度值的度值, 当我们使用一个新的计算方法的时候, 我们用一个新的变价法的值的值的计算法 。