In this paper, we describe and analyze the spectral properties of a number of exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the FGMRES method. We develop a spectral analysis of the preconditioned matrix showing that the complex eigenvalues lie in a circle of center (1,0) and radius 1, while the real eigenvalues are described in terms of the roots of a third order polynomial with real coefficients. Numerical examples are reported to illustrate the efficiency of inexact versions of the proposed preconditioners, and to verify the theoretical bounds.
翻译:暂无翻译