Data-driven, model-free analytics are natural choices for discovery and forecasting of complex, nonlinear systems. Methods that operate in the system state-space require either an explicit multidimensional state-space, or, one approximated from available observations. Since observational data are frequently sampled with noise, it is possible that noise can corrupt the state-space representation degrading analytical performance. Here, we evaluate the synthesis of empirical mode decomposition with empirical dynamic modeling, which we term empirical mode modeling, to increase the information content of state-space representations in the presence of noise. Evaluation of a mathematical, and, an ecologically important geophysical application across three different state-space representations suggests that empirical mode modeling may be a useful technique for data-driven, model-free, state-space analysis in the presence of noise.
翻译:由数据驱动的、不使用模型的分析分析是发现和预测复杂、非线性系统的自然选择。在系统国家空间运行的方法需要明确的多维状态空间,或与现有观测相近。由于观测数据经常以噪音进行抽样,因此噪音有可能腐蚀国家空间代表的低度分析性表现。在这里,我们评估经验模式分解与经验动态模型的合成,我们称之为经验模式模型模型,以便在噪音面前增加州空间代表的信息内容。对数学的评价以及三个不同的州空间代表的具有生态重要性的地球物理应用表明,在噪音面前,经验模式建模可能是数据驱动的、无模型的、州空间分析的有用方法。