Representation learning for speech emotion recognition is challenging due to labeled data sparsity issue and lack of gold standard references. In addition, there is much variability from input speech signals, human subjective perception of the signals and emotion label ambiguity. In this paper, we propose a machine learning framework to obtain speech emotion representations by limiting the effect of speaker variability in the speech signals. Specifically, we propose to disentangle the speaker characteristics from emotion through an adversarial training network in order to better represent emotion. Our method combines the gradient reversal technique with an entropy loss function to remove such speaker information. Our approach is evaluated on both IEMOCAP and CMU-MOSEI datasets. We show that our method improves speech emotion classification and increases generalization to unseen speakers.


翻译:此外,输入语音信号、人类对信号的主观感知以及情感标签的模糊性等差异很大。在本文中,我们提出一个机器学习框架,通过限制语音信号中演讲者变异的影响来获取语音情感表征。具体地说,我们提议通过对抗性培训网络将演讲者特征与情绪脱钩,以便更好地代表情感。我们的方法是将梯度回转技术与取消这些演讲者信息的增缩功能结合起来。我们的方法在IMOC和CMU-MOSEI数据集中都进行了评估。我们表明,我们的方法改进了语言情感分类,增加了对看不见演讲者的概括性。

0
下载
关闭预览

相关内容

表示学习是通过利用训练数据来学习得到向量表示,这可以克服人工方法的局限性。 表示学习通常可分为两大类,无监督和有监督表示学习。大多数无监督表示学习方法利用自动编码器(如去噪自动编码器和稀疏自动编码器等)中的隐变量作为表示。 目前出现的变分自动编码器能够更好的容忍噪声和异常值。 然而,推断给定数据的潜在结构几乎是不可能的。 目前有一些近似推断的策略。 此外,一些无监督表示学习方法旨在近似某种特定的相似性度量。提出了一种无监督的相似性保持表示学习框架,该框架使用矩阵分解来保持成对的DTW相似性。 通过学习保持DTW的shaplets,即在转换后的空间中的欧式距离近似原始数据的真实DTW距离。有监督表示学习方法可以利用数据的标签信息,更好地捕获数据的语义结构。 孪生网络和三元组网络是目前两种比较流行的模型,它们的目标是最大化类别之间的距离并最小化了类别内部的距离。
首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
50+阅读 · 2021年1月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
专知会员服务
54+阅读 · 2019年12月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
Top
微信扫码咨询专知VIP会员