Let $k,\ell\geq 2$ be two multiplicatively independent integers. Cobham's famous theorem states that a set $X\subseteq \mathbb{N}$ is both $k$-recognizable and $\ell$-recognizable if and only if it is definable in Presburger arithmetic. Here we show the following strengthening: let $X\subseteq \mathbb{N}^m$ be $k$-recognizable, let $Y\subseteq \mathbb{N}^m$ be $\ell$-recognizable such that both $X$ and $Y$ are not definable in Presburger arithmetic. Then the first-order logical theory of $(\mathbb{N},+,X,Y)$ is undecidable. This is in contrast to a well-known theorem of B\"uchi that the first-order logical theory of $(\mathbb{N},+,X)$ is decidable.
翻译:Let $k,\ ell\ geq 2$ 属于两个多倍独立的整数。 Cobham 的著名理论称, 一套 $X\ subseteq \ mathb{N} 美元是 $k$- recolable 和 $\ ell $- recognen, 只有在Presburger 算术中可以确定的情况下, 美元, 才能被确认为 $k,\ ell\ geq 2$ 。 这里我们展示了以下的增强值 : $X\ subsete \ mathbb{N ⁇ / n ⁇ m 美元是 $\ subseq \ mathbb{ N}, +, X, X, Y) 美元的第一阶逻辑理论是不可估量的。 这与 $( mathbbb}, +, X) 第一阶的逻辑理论是可解的 。