Hamiltonian cycles in graphs were first studied in the 1850s. Since then, an impressive amount of research has been dedicated to identifying classes of graphs that allow Hamiltonian cycles, and to related questions. The corresponding decision problem, that asks whether a given graph is Hamiltonian (i.\,e.\ admits a Hamiltonian cycle), is one of Karp's famous NP-complete problems. In this paper we study graphs of bounded degree that are \emph{far} from being Hamiltonian, where a graph $G$ on $n$ vertices is \emph{far} from being Hamiltonian, if modifying a constant fraction of $n$ edges is necessary to make $G$ Hamiltonian. We give an explicit deterministic construction of a class of graphs of bounded degree that are locally Hamiltonian, but (globally) far from being Hamiltonian. Here, \emph{locally Hamiltonian} means that every subgraph induced by the neighbourhood of a small vertex set appears in some Hamiltonian graph. More precisely, we obtain graphs which differ in $\Theta(n)$ edges from any Hamiltonian graph, but non-Hamiltonicity cannot be detected in the neighbourhood of $o(n)$ vertices. Our class of graphs yields a class of hard instances for one-sided error property testers with linear query complexity. It is known that any property tester (even with two-sided error) requires a linear number of queries to test Hamiltonicity (Yoshida, Ito, 2010). This is proved via a randomised construction of hard instances. In contrast, our construction is deterministic. So far only very few deterministic constructions of hard instances for property testing are known. We believe that our construction may lead to future insights in graph theory and towards a characterisation of the properties that are testable in the bounded-degree model.


翻译:1850年代首次研究了汉密尔顿周期的图表。 自那时以来, 大量的研究都用于确定允许汉密尔顿周期的图表类别, 以及相关问题。 相应的决定问题, 询问某个特定图表是否为汉密尔顿( i.\, e.\ 承认汉密尔顿周期 ), 是Karp 著名的 NP 完整的问题之一 。 在本文中, 我们从汉密尔顿州开始研究约束度的图表, 其范围不是 汉密尔顿州。 自那时以来, 大量的研究都致力于确定允许汉密尔顿州循环周期的图表类别类别。 如果需要修改一个固定部分的美尔密尔密尔顿周期( e., e., e. i. i. i. 明确确定某类封闭度的图表类型, 但它的构造是已知的。 在汉密尔顿州( ) 度测试中, 直径直线度( i.) 直径( i) 直径, 直径( 直径) 直径) 直地( 直径) 直径) 直径( 直径), 直径) 直路路径( 直) 直) 直) 直) 直( 直) 直) 直( 直),, 根根根根根根根根根根根根根根根( 直) 直) 直),,, 直路路路路路路路路路路路路路路徑(,,,,, 直, 直, 直线 直) 直) 直) 直, 直 直线 直,, 直线 直, 直线,, 直,,, 直,,,, 直,,,,, 直线,,,, 直线 直,,,, 直线 直线,,,,,,,,, 直线 直线 直线,,, 直线 直线,,,

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2018年8月21日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月19日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
0+阅读 · 2022年2月18日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2018年8月21日
Top
微信扫码咨询专知VIP会员