Federated learning (FL) is a promising way to use the computing power of mobile devices while maintaining the privacy of users. Current work in FL, however, makes the unrealistic assumption that the users have ground-truth labels on their devices, while also assuming that the server has neither data nor labels. In this work, we consider the more realistic scenario where the users have only unlabeled data, while the server has some labeled data, and where the amount of labeled data is smaller than the amount of unlabeled data. We call this learning problem semi-supervised federated learning (SSFL). For SSFL, we demonstrate that a critical issue that affects the test accuracy is the large gradient diversity of the models from different users. Based on this, we investigate several design choices. First, we find that the so-called consistency regularization loss (CRL), which is widely used in semi-supervised learning, performs reasonably well but has large gradient diversity. Second, we find that Batch Normalization (BN) increases gradient diversity. Replacing BN with the recently-proposed Group Normalization (GN) can reduce gradient diversity and improve test accuracy. Third, we show that CRL combined with GN still has a large gradient diversity when the number of users is large. Based on these results, we propose a novel grouping-based model averaging method to replace the FedAvg averaging method. Overall, our grouping-based averaging, combined with GN and CRL, achieves better test accuracy than not just a contemporary paper on SSFL in the same settings (>10\%), but also four supervised FL algorithms.


翻译:联邦学习( FL) 是使用移动设备计算能力,同时维护用户隐私的一个很有希望的方法。 然而, FL 目前的工作却不切实际地假设用户在设备上贴有地面真相标签, 同时假设服务器没有数据或标签。 在这项工作中, 我们考虑更现实的假设, 即用户只有未贴标签的数据, 而服务器有一些标签数据, 标签数据的数量比未贴标签数据的数量要小。 我们称这个学习问题半监督的联邦学习( SSFL ) 。 对于 SSLL 来说, 一个影响测试准确性的关键问题是不同用户的模型的大幅梯度多样性。 基于这个假设, 我们调查了几个设计选项。 首先, 我们发现所谓的一致性调整损失( CRL) (CRL ) 被广泛用于半超标的学习, 运行质量差异也相当大。 其次, 我们发现 Batch 正常化( BN) 会增加梯度多样性。 重新将BN 与最近推出的集团的正常化( GN) 联合文件( GN), 我们也可以用高的CR 标准级测试方法来降低 。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员