We can achieve significant gains in the value of computation by metareasoning about the nature or extent of base-level problem solving before executing a solution. However, resources that are irrevocably committed to metareasoning are not available for executing a solution. Thus, it is important to determine the portion of resources we wish to apply to metareasoning and control versus to the execution of a solution plan. Recent research on rational agency has highlighted the importance of limiting the consumption of resources by metareasoning machinery. We shall introduce the metareasoning-partition problem--the problem of ideally apportioning costly reasoning resources to planning a solution versus applying resource to executing a solution to a problem. We exercise prototypical metareasoning-partition models to probe the relationships between time allocated to metareasoning and to execution for different problem classes. Finally, we examine the value of metareasoning in the context of our functional analyses.


翻译:在执行解决方案之前,我们可以从基础层面解决问题的性质或程度出发,实现计算价值的重大增益。然而,无法为执行解决方案提供不可撤销地承诺用于转化的资源。因此,必须确定我们希望用于转换和控制的资源比例,而不是用于执行解决方案计划的资源比例。最近关于合理机构的研究强调了通过转换机制限制资源消费的重要性。我们将引入一个超正派问题,即理想的做法是将昂贵的推理资源用于规划解决方案,而将资源用于实施问题的解决方案。我们采用反常的反向分配模式,以探究分配用于转换和控制的时间和用于不同问题类别执行的时间之间的关系。最后,我们结合我们的职能分析,审查元化价值。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
专知会员服务
17+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
相关论文
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员