Soft biometrics inference in surveillance scenarios is a topic of interest for various applications, particularly in security-related areas. However, soft biometric analysis is not extensively reported in wild conditions. In particular, previous works on gender recognition report their results in face datasets, with relatively good image quality and frontal poses. Given the uncertainty of the availability of the facial region in wild conditions, we consider that these methods are not adequate for surveillance settings. To overcome these limitations, we: 1) present frontal and wild face versions of three well-known surveillance datasets; and 2) propose YinYang-Net (YY-Net), a model that effectively and dynamically complements facial and body information, which makes it suitable for gender recognition in wild conditions. The frontal and wild face datasets derive from widely used Pedestrian Attribute Recognition (PAR) sets (PETA, PA-100K, and RAP), using a pose-based approach to filter the frontal samples and facial regions. This approach retrieves the facial region of images with varying image/subject conditions, where the state-of-the-art face detectors often fail. YY-Net combines facial and body information through a learnable fusion matrix and a channel-attention sub-network, focusing on the most influential body parts according to the specific image/subject features. We compare it with five PAR methods, consistently obtaining state-of-the-art results on gender recognition, and reducing the prediction errors by up to 24% in frontal samples. The announced PAR datasets versions and YY-Net serve as the basis for wild soft biometrics classification and are available in https://github.com/Tiago-Roxo.
翻译:监视情景中的软生物测定推断是各种应用,特别是安全相关领域的应用感兴趣的话题。然而,野生条件下没有广泛报道软生物测定分析。特别是,以往的性别识别工作在面对面的数据集中报告了其结果,其图像质量相对较好和前方构成。鉴于在野生条件下面部特征的不确定性,我们认为这些方法不足以用于监视设置。为了克服这些限制,我们:(1) 提供三个众所周知的监控数据集的正面和野面版本;(2) 提议YinYinYang-Net(YY-Net),这是一个有效和动态地补充面部和身体信息的模型,该模型在野生条件下能够有效和动态地补充面部和身体信息。前方和野面面的数据集来自广泛使用的Pedrical属性识别(PAR)数据集(PATA、PA-100K和RAP),使用基于表面的方法过滤前方样本和面部区域。这一方法回收了有不同图像/直面部图像的面部区域,在那里可以降低图像的样本。YYYY-Net在野面部的检测中往往会失败。我们将头部和头部的图像和头部的图像数据库的图像数据定位数据与正位化数据组合集集集集,通过一个持续地学习数据与具体地对数据进行对比,通过特定的图像和图像和图像的系统进行对比,通过特定的图像和图像和图像的系统进行内部的系统进行对比,以学习来学习。