CNN-based face recognition models have brought remarkable performance improvement, but they are vulnerable to adversarial perturbations. Recent studies have shown that adversaries can fool the models even if they can only access the models' hard-label output. However, since many queries are needed to find imperceptible adversarial noise, reducing the number of queries is crucial for these attacks. In this paper, we point out two limitations of existing decision-based black-box attacks. We observe that they waste queries for background noise optimization, and they do not take advantage of adversarial perturbations generated for other images. We exploit 3D face alignment to overcome these limitations and propose a general strategy for query-efficient black-box attacks on face recognition named Geometrically Adaptive Dictionary Attack (GADA). Our core idea is to create an adversarial perturbation in the UV texture map and project it onto the face in the image. It greatly improves query efficiency by limiting the perturbation search space to the facial area and effectively recycling previous perturbations. We apply the GADA strategy to two existing attack methods and show overwhelming performance improvement in the experiments on the LFW and CPLFW datasets. Furthermore, we also present a novel attack strategy that can circumvent query similarity-based stateful detection that identifies the process of query-based black-box attacks.


翻译:有线电视新闻网基于CNN的面部识别模型带来了显著的绩效改进,但它们很容易受到对抗性干扰。最近的研究显示,对手可以愚弄模型,即使他们只能访问模型的硬标签输出。然而,由于需要许多查询才能找到无法察觉的对立噪音,减少询问数量对于这些袭击至关重要。在本文中,我们指出现有基于决策的黑箱袭击的两种局限性。我们发现,它们浪费了背景噪音优化查询,它们没有利用为其他图像产生的对抗性扰动。我们利用3D面部调整战略来克服这些限制,并提出了对面部识别进行高效的黑箱袭击的总体战略,名为几何调调式对词攻击(GADAD ) 。我们的核心想法是在紫外线图中制造一种对抗性干扰,并将它投放到图像中。我们通过将扰动性搜索空间限制在面部,并有效地回收先前的触动性图像。我们将GADADAD战略应用于两种现有的攻击方法,并展示了对以查询为压倒力的对面攻击性效果的改进。我们目前对LF-CP的探测战略的升级。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
0+阅读 · 2022年1月12日
Arxiv
7+阅读 · 2021年8月25日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员