Despite the impact of psychiatric disorders on clinical health, early-stage diagnosis remains a challenge. Machine learning studies have shown that classifiers tend to be overly narrow in the diagnosis prediction task. The overlap between conditions leads to high heterogeneity among participants that is not adequately captured by classification models. To address this issue, normative approaches have surged as an alternative method. By using a generative model to learn the distribution of healthy brain data patterns, we can identify the presence of pathologies as deviations or outliers from the distribution learned by the model. In particular, deep generative models showed great results as normative models to identify neurological lesions in the brain. However, unlike most neurological lesions, psychiatric disorders present subtle changes widespread in several brain regions, making these alterations challenging to identify. In this work, we evaluate the performance of transformer-based normative models to detect subtle brain changes expressed in adolescents and young adults. We trained our model on 3D MRI scans of neurotypical individuals (N=1,765). Then, we obtained the likelihood of neurotypical controls and psychiatric patients with early-stage schizophrenia from an independent dataset (N=93) from the Human Connectome Project. Using the predicted likelihood of the scans as a proxy for a normative score, we obtained an AUROC of 0.82 when assessing the difference between controls and individuals with early-stage schizophrenia. Our approach surpassed recent normative methods based on brain age and Gaussian Process, showing the promising use of deep generative models to help in individualised analyses.
翻译:尽管精神紊乱对临床健康有影响,早期诊断仍是一个挑战。机器学习研究表明,分类者在诊断预测任务中往往过于狭窄。条件重叠导致参与者之间出现高度异质性,而分类模型没有充分捕捉到这些问题。为解决这一问题,规范方法作为一种替代方法激增。通过使用基因化模型来了解健康大脑数据模式的分布,我们可以发现病理的存在是该模型所学分布的偏差或偏差。特别是,深层次的基因化模型显示,作为确定大脑神经损伤的规范性模型,有巨大的结果。然而,与大多数神经损伤不同的是,精神病在几个大脑区域普遍存在微妙的变化,使这些变化具有挑战性。在这项工作中,我们评估了基于变压器的规范模型的性能,以检测青少年和年轻成年人的大脑变化。我们用3D MRI扫描神经典型个体的模型(N=1,7655)。然后,我们从一个独立的数据模型(N=93)中获得了早期精神系统分裂症患者帮助的早期精神分裂症患者,从一个独立的大脑变异性模型中,从一个预测的Aleural imal Procalal Procal imal imal imal imal imal imal imal imal im im im im im imal imal im impal impal improal im im im im imal im im im im im im im im im im im im im im im imation imation imation imation imation imation im imations im improcalvications im im impealations impal impeal impal impal im im im im im im im im im im im im imal impal im imal imal im im im imal im impal impal im im im im imal im im imal imal improal impeal impal impal imal imal im