Irreversible drift-diffusion processes are very common in biochemical reactions. They have a non-equilibrium stationary state (invariant measure) which does not satisfy detailed balance. For the corresponding Fokker-Planck equation on a closed manifold, via Voronoi tessellation, we propose two upwind finite volume schemes with or without the information of the invariant measure. Both two schemes enjoy stochastic $Q$-matrix structures and can be decomposed as a gradient flow part and a Hamiltonian flow part, which enable us to prove unconditional stability, ergodicity and error estimates. Based on two upwind schemes, several numerical examples - including sampling accelerated by a mixture flow, image transformations and simulations for stochastic model of chaotic system - are conducted. These two structure-preserving schemes also give a natural random walk approximation for a generic irreversible drift-diffusion process on a manifold. Thus they can be adapted to manifold-related computations induced from high dimensional molecular dynamics.
翻译:在生化反应中,不可逆的漂流扩散过程非常常见。 它们具有非平衡的固定状态( 变化量度), 无法满足详细平衡 。 对于通过Voronoi 熔化, 我们提议两种具有或没有不变化量度信息的顺风量定量方案。 这两种方案都具有随机性 $Q- 矩阵结构, 可以作为一个梯流部分和汉密尔顿流部分分解, 使我们能够证明无条件的稳定性、 遗传性和误差估计。 根据两种上风方案, 进行了几个数字例子, 包括混合流加速采样、 图像转换和混乱系统随机模型模拟。 这两种结构保护计划也为多元的通用不可逆转流化流化过程提供了自然的随机行走近似。 因此, 它们可以适应由高维分子动态引起的多重计算。