A simple and very accurate method to approximate a function with a finite number of discontinuities is presented. This method relies on hyperbolic tangent functions of rational arguments as connecting functions at the discontinuities, each argument being the reciprocal of Newton binomials that depend on the abscissae that define the domain of the discontinuous function and upon the abscissae of discontinuities. Our approximants take the form of linear combinations of such hyperbolic tangent functions with coefficients that are obtained by solving a linear system of inhomogeneous equations whose righthand sides are the partition functions that define the given discontinuous function. These approximants are analytic, and being free from the Gibbs phenomenon certainly converge at the discontinuity points much better than other known approximants to discontinuous functions, typical relative errors being of the order of 10-14 even when as close as 10-12 to the discontinuity points. Moreover, they can be readily scaled to larger intervals. Our method is here illustrated with a representative set of discontinuous mathematical physics functions, and by studying the dynamics of an oscillator subjected to a discontinuous force, but it can be applied to important cases of discontinuous functions in physics, mathematics, engineering and physical chemistry.


翻译:提供了一种简单而非常精确的方法, 以一定的不连续次数来估计函数。 这种方法依赖于理性参数的双曲正切函数, 作为不连续函数的连接函数, 每种参数都是牛顿二进制的对等函数, 取决于确定不连续函数域的腹部和不连续函数的腹部。 我们的近似值采取这种双曲正切函数的线性组合形式, 其系数是通过解决一个线性不相容公式系统, 其右侧是确定给定不连续函数的分割函数。 这些近似参数都是不连续函数的对等值, 并且与Gibs现象的对等值相对, 这些不连续函数的不连续点比其他已知的不连续函数要好得多, 典型的不连续函数的相对误差是, 即使接近不连续点的点接近于不连续点 10-12 。 此外, 它们也可以很容易缩放到更大的间隔。 我们的方法在这里用一组具有代表性的不连续数学物理函数来说明, 并且通过研究一个重要的物理学物理学的动态, 将它应用到不连续的物理学的物理学系, 。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员