Low Dose Computed Tomography (LDCT) is clinically desirable due to the reduced radiation to patients. However, the quality of LDCT images is often sub-optimal because of the inevitable strong quantum noise. Inspired by their unprecedent success in computer vision, deep learning (DL)-based techniques have been used for LDCT denoising. Despite the promising noise removal ability of DL models, people have observed that the resolution of the DL-denoised images is compromised, decreasing their clinical value. Aiming at relieving this problem, in this work, we developed a more effective denoiser by introducing a high-resolution network (HRNet). Since HRNet consists of multiple branches of subnetworks to extract multiscale features which are later fused together, the quality of the generated features can be substantially enhanced, leading to improved denoising performance. Experimental results demonstrated that the introduced HRNet-based denoiser outperforms the benchmarked UNet-based denoiser in terms of superior image resolution preservation ability while comparable, if not better, noise suppression ability. Quantitative metrics in terms of root-mean-squared-errors (RMSE)/structure similarity index (SSIM) showed that the HRNet-based denoiser can improve the values from 113.80/0.550 (LDCT) to 55.24/0.745 (HRNet), in comparison to 59.87/0.712 for the UNet-based denoiser.
翻译:59. 然而,在这项工作中,我们通过引入高分辨率网络(HRNet)来缓解这一问题,从而发展了一个更为有效的Denoiser。由于在计算机愿景方面前所未有的成功,基于深层次学习(DL)的技术已被运用到LDCT的去除。尽管DL模型的去除噪音能力大有希望,但人们发现,DL隐蔽图像的解声能力受损,降低了他们的临床价值。为了缓解这一问题,我们在这项工作中采用了一个高分辨率网络(HRNet),因此,LDCT图像的质量往往不尽如人意。由于HRNet由多个子网络分支分支部门组成,以提取后来融合在一起的多尺度特征,因此,产生的特征的质量可以大大提高,从而改进了分泌性。实验结果表明,采用基于 HRNet的解音器的解音器在基于基于UNLet的更高分辨率分辨率的维护能力方面超过了基准值,同时可以比较(如果不是更好的话)抑制噪音的能力。在IMIM/TRIM/DIM(G-IM-DIM-DI)中,其基础值的定量指标性指标比RIM/DIM-RIS-DRIS-qral-qral-qral-qral-qral-qsma-qs-qual-qs-qual_G)中,可以改善。