Single particle reconstruction has recently emerged in 3D fluorescence microscopy as a powerful technique to improve the axial resolution and the degree of fluorescent labeling. It is based on the reconstruction of an average volume of a biological particle from the acquisition multiple views with unknown poses. Current methods are limited either by template bias, restriction to 2D data, high computational cost or a lack of robustness to low fluorescent labeling. In this work, we propose a single particle reconstruction method dedicated to convolutional models in 3D fluorescence microscopy that overcome these issues. We address the joint reconstruction and estimation of the poses of the particles, which translates into a challenging non-convex optimization problem. Our approach is based on a multilevel reformulation of this problem, and the development of efficient optimization techniques at each level. We demonstrate on synthetic data that our method outperforms the standard approaches in terms of resolution and reconstruction error, while achieving a low computational cost. We also perform successful reconstruction on real datasets of centrioles to show the potential of our method in concrete applications.


翻译:3D 荧光显微镜中最近出现了单一粒子的重建,这是改进轴分辨率和荧光标记程度的有力技术,其基础是从获得的多重观点中重建平均数量的生物粒子,其外形不明。目前的方法有:模板偏差、限制2D数据、高计算成本或低荧光标记缺乏坚固度。在这项工作中,我们提议了一种单一粒子重建方法,专门用于3D 荧光显微镜中革命模型,以克服这些问题。我们处理的是粒子构成的联合重建和估计,这转化成一个具有挑战性的非电离子优化问题。我们的方法基于这一问题的多层次重新拟订,以及各级发展有效的优化技术。我们通过合成数据证明,我们的方法在分辨率和重建错误方面超过了标准方法,同时实现了低计算成本。我们还成功地重建了百分子真实数据集,以显示我们方法在具体应用方面的潜力。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员