For a given family of shapes ${\mathcal F}$ in the plane, we study what is the lowest possible density of a point set $P$ that pierces ("intersects", "hits") all translates of each shape in ${\mathcal F}$. For instance, if ${\mathcal F}$ consists of two axis-parallel rectangles the best known piercing set, i.e., one with the lowest density, is a lattice: for certain families the known lattices are provably optimal whereas for other, those lattices are just the best piercing sets currently known. Given a finite family ${\mathcal F}$ of axis-parallel rectangles, we present two algorithms for finding an optimal ${\mathcal F}$-piercing lattice. Both algorithms run in time polynomial in the number of rectangles and the maximum aspect ratio of the rectangles in the family. No prior algorithms were known for this problem. Then we prove that for every $n \geq 3$, there exist a family of $n$ axis-parallel rectangles for which the best piercing density achieved by a lattice is separated by a positive (constant) gap from the optimal piercing density for the respective family. Finally, we sharpen our separation result by running the first algorithm on a suitable instance, and show that the best lattice can be sometimes worse by $20\%$ than the optimal piercing set.
翻译:对于在平面上的形状家族 $( mathcal F) 美元, 我们研究什么是设定点的最低密度 $P 的定值 $( “ 中间区 ”, “ Hits ” ), 每一个形状都翻译为$( mathcal F ) 美元。 例如, 如果$( mathcal F) 美元 由两个轴- 轴- 平行矩形组成, 也就是最已知的穿孔套式组成, 即 密度最小的, 是一个拉链形: 对于某些家庭来说, 已知的吊带是最理想的, 而对于其他家庭来说, 这些吊带只是目前所知道的最差的直径。 鉴于轴- 平行矩形的有限型家族 $( mathalcal F) 美元, 我们提出两种算法来寻找最合适的 $( mac) F) 的矩形矩形矩形矩形矩形矩形矩形矩形矩形矩形, 和直角形的顶形三角形三角形的顶形比我们所知道的硬形的硬形的硬形 。 然后, 直形的直形的直径 直径 直径 直径 直径 直径 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形 直方形