This paper presents Motion Puzzle, a novel motion style transfer network that advances the state-of-the-art in several important respects. The Motion Puzzle is the first that can control the motion style of individual body parts, allowing for local style editing and significantly increasing the range of stylized motions. Designed to keep the human's kinematic structure, our framework extracts style features from multiple style motions for different body parts and transfers them locally to the target body parts. Another major advantage is that it can transfer both global and local traits of motion style by integrating the adaptive instance normalization and attention modules while keeping the skeleton topology. Thus, it can capture styles exhibited by dynamic movements, such as flapping and staggering, significantly better than previous work. In addition, our framework allows for arbitrary motion style transfer without datasets with style labeling or motion pairing, making many publicly available motion datasets available for training. Our framework can be easily integrated with motion generation frameworks to create many applications, such as real-time motion transfer. We demonstrate the advantages of our framework with a number of examples and comparisons with previous work.
翻译:本文展示了运动图案,这是一个新颖的运动风格转移网络,在几个重要方面推进了最先进的艺术。 运动图案是第一个能够控制各身体部分运动风格的网络, 允许本地风格编辑, 并大大增加了运动型运动的范围。 为了保持人类的运动结构, 我们的框架从不同身体部分的多种风格运动中提取了风格特征, 并将其本地传输到目标身体部分。 另一个主要优势是它能够通过整合适应性实例正常化和关注模块, 并同时保持骨骼表层学, 将运动风格的全球和地方特性转移过来。 因此, 它可以捕捉动态运动风格所展示的风格, 如拍和摇晃动, 大大优于先前的工作。 此外, 我们的框架允许任意运动风格转移数据, 不带样式标签或运动配对, 使许多公开可用的运动数据集可供培训使用。 我们的框架很容易与运动生成框架整合, 以创造许多应用程序, 如实时运动转移。 我们用一些实例和比较来展示我们的框架的优势。