In this paper, we propose a novel adaptive stochastic extended iterative method, which can be viewed as an improved extension of the randomized extended Kaczmarz (REK) method, for finding the unique minimum Euclidean norm least-squares solution of a given linear system. In particular, we introduce three equivalent stochastic reformulations of the linear least-squares problem: stochastic unconstrained and constrained optimization problems, and the stochastic multiobjective optimization problem. We then alternately employ the adaptive variants of the stochastic heavy ball momentum (SHBM) method, which utilize iterative information to update the parameters, to solve the stochastic reformulations. We prove that our method converges linearly in expectation, addressing an open problem in the literature related to designing theoretically supported adaptive SHBM methods. Numerical experiments show that our adaptive stochastic extended iterative method has strong advantages over the non-adaptive one.
翻译:暂无翻译