We present a Reinforcement Learning (RL) methodology to bypass Google reCAPTCHA v3. We formulate the problem as a grid world where the agent learns how to move the mouse and click on the reCAPTCHA button to receive a high score. We study the performance of the agent when we vary the cell size of the grid world and show that the performance drops when the agent takes big steps toward the goal. Finally, we used a divide and conquer strategy to defeat the reCAPTCHA system for any grid resolution. Our proposed method achieves a success rate of 97.4% on a 100x100 grid and 96.7% on a 1000x1000 screen resolution.


翻译:我们提出了绕过Google RECAPTCHA v3 的强化学习方法。 我们把问题发展成一个网格世界, 代理商学习如何移动鼠标, 并点击重鼠标按钮获得高分。 当我们改变网格世界的细胞大小时, 我们研究该代理商的性能, 并显示当代理商朝着目标迈出大步时, 性能会下降。 最后, 我们用分裂和征服策略来击败重鼠标卡系统 。 我们提议的方法在100x100的网格上取得了97.4%的成功率, 在1000x1000的屏幕分辨率上取得了96.7%的成功率 。

0
下载
关闭预览

相关内容

【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
11+阅读 · 2018年4月25日
Arxiv
9+阅读 · 2018年4月20日
VIP会员
相关VIP内容
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
11+阅读 · 2018年4月25日
Arxiv
9+阅读 · 2018年4月20日
Top
微信扫码咨询专知VIP会员