Channel knowledge map (CKM) is an emerging technique to enable environment-aware wireless communications, in which databases with location-specific channel knowledge are used to facilitate or even obviate real-time channel state information acquisition. One fundamental problem for CKM-enabled communication is how to efficiently construct the CKM based on finite measurement data points at limited user locations. Towards this end, this paper proposes a novel map construction method based on the \emph{expectation maximization} (EM) algorithm, by utilizing the available measurement data, jointly with the expert knowledge of well-established statistic channel models. The key idea is to partition the available data points into different groups, where each group shares the same modelling parameter values to be determined. We show that determining the modelling parameter values can be formulated as a maximum likelihood estimation problem with latent variables, which is then efficiently solved by the classic EM algorithm. Compared to the pure data-driven methods such as the nearest neighbor based interpolation, the proposed method is more efficient since only a small number of modelling parameters need to be determined and stored. Furthermore, the proposed method is extended for constructing a specific type of CKM, namely, the channel gain map (CGM), where closed-form expressions are derived for the E-step and M-step of the EM algorithm. Numerical results are provided to show the effectiveness of the proposed map construction method as compared to the benchmark curve fitting method with one single model.


翻译:频道知识映射(CKM)是一种新兴技术,有助于环境觉察无线通信,其中使用具有特定地点频道知识的数据库,促进或甚至避免实时频道国家信息获取。CKM带动的通信的一个基本问题是,如何在有限的用户地点根据有限的测量数据点高效率地构建CKM。为此,本文件提议了一种新的地图构建方法,其依据是:利用现有的测量数据,与成熟的统计频道模型模型专家知识共同使用。关键的想法是将可用数据点分成不同组,每个组共享相同的建模参数值。我们表明,确定建模参数值可以作为一种最大的可能性估算问题,与潜在的变量相结合,然后由传统的EM算法有效解决。与纯数据驱动的方法,如最近的邻居内推法相比,拟议的方法效率更高,因为只需要确定和储存少量的建模参数。此外,拟议的方法是将构建一个特定类型的CKMM型模型,其中每个组共享相同的建模参数值。 我们表明,确定建模参数值可以作为潜在变量的一个最大的可能性估算问题,然后由传统的EM算法有效解决。与纯数据驱动方法,例如最近的邻系内测测,因为只需要确定和储存的模拟的模型参数的图的图的精度的精度的精度的精度,因此将扩展为CKMM。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】基于建筑立面对称性的语义分析(3dv-56)
泡泡机器人SLAM
3+阅读 · 2018年3月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
7+阅读 · 2017年7月11日
Arxiv
0+阅读 · 2021年10月10日
Arxiv
4+阅读 · 2020年3月27日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】基于建筑立面对称性的语义分析(3dv-56)
泡泡机器人SLAM
3+阅读 · 2018年3月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员