We propose a novel quantum computing strategy for parallel MCMC algorithms that generate multiple proposals at each step. This strategy makes parallel MCMC amenable to quantum parallelization by using the Gumbel-max trick to turn the generalized accept-reject step into a discrete optimization problem. This allows us to embed target density evaluations within a well-known extension of Grover's quantum search algorithm. Letting $P$ denote the number of proposals in a single MCMC iteration, the combined strategy reduces the number of target evaluations required from $\mathcal{O}(P)$ to $\mathcal{O}(P^{1/2})$. In the following, we review both the rudiments of quantum computing and the Gumbel-max trick in order to elucidate their combination for as wide a readership as possible.
翻译:我们为平行的MCMC算法提出了一个新的量子计算战略,在每步产生多个建议。 该战略通过使用 Gumbel- max 骗把普遍接受的反转步转换成一个离散的优化问题, 使得MCMC平行的量子平行化。 这使我们能够将目标密度评价嵌入一个众所周知的 Grover 量子搜索算法的延伸中。 在一个单个的MCMC 迭代中让 $P$ 表示建议的数量, 合并战略将所需的目标评价数量从$\ mathcal{O} (P) 减为$\ mathcal{O} (P ⁇ 1/2}) 。 在接下来, 我们审查量子计算和 Gumber- max 戏法的轮廓, 以便尽可能为广大的读者阐明它们的组合。