Generative AI models are emerging as a versatile tool across diverse industries with applications in synthetic data generation computational art personalization of products and services and immersive entertainment Here we introduce a new privacy concern in the adoption and use of generative AI models that of coincidental generation Coincidental generation occurs when a models output inadvertently bears a likeness to a realworld entity Consider for example synthetic portrait generators which are today deployed in commercial applications such as virtual modeling agencies and synthetic stock photography We argue that the low intrinsic dimensionality of human face perception implies that every synthetically generated face will coincidentally resemble an actual person all but guaranteeing a privacy violation in the form of a misappropriation of likeness.
翻译:巧合生成
生成式人工智能模型正在不同行业中崛起,应用于合成数据生成、计算机艺术、产品与服务的个性化以及沉浸式娱乐等领域。本文引入了一种新的隐私问题,即巧合生成,这一问题出现在采用和使用生成式人工智能模型时。巧合生成是指模型的输出无意中与真实世界中的某个实体相似。例如,合成肖像生成器现在被用于商业应用,如虚拟的模特机构和合成股票照片。我们认为,人类面部感知的低内在维度意味着每个合成生成的面孔都将巧合地类似于一个真实人物,几乎可以保证隐私侵犯形成肖像侵权。