Recently, query based object detection frameworks achieve comparable performance with previous state-of-the-art object detectors. However, how to fully leverage such frameworks to perform instance segmentation remains an open problem. In this paper, we present QueryInst, a query based instance segmentation method driven by parallel supervision on dynamic mask heads. The key insight of QueryInst is to leverage the intrinsic one-to-one correspondence in object queries across different stages, as well as one-to-one correspondence between mask RoI features and object queries in the same stage. This approach eliminates the explicit multi-stage mask head connection and the proposal distribution inconsistency issues inherent in non-query based multi-stage instance segmentation methods. We conduct extensive experiments on three challenging benchmarks, i.e., COCO, CityScapes, and YouTube-VIS to evaluate the effectiveness of QueryInst in instance segmentation and video instance segmentation (VIS) task. Specifically, using ResNet-101-FPN backbone, QueryInst obtains 48.1 box AP and 42.8 mask AP on COCO test-dev, which is 2 points higher than HTC in terms of both box AP and mask AP, while runs 2.4 times faster. For video instance segmentation, QueryInst achieves the best performance among all online VIS approaches and strikes a decent speed-accuracy trade-off. Code is available at \url{https://github.com/hustvl/QueryInst}.


翻译:最近,基于查询的物体检测框架取得了与以往最先进的物体探测器的类似性能。 但是,如何充分利用这些框架来进行实例分割仍然是一个尚未解决的问题。 在本文中,我们介绍了由动态面具头平行监督驱动的基于查询的实例分割方法QueryInst。 QueryInst的关键洞察目标是在不同阶段的物体查询中利用内在的一对一通信,以及同一阶段的遮罩 RoI 特征和对象查询之间的一对一通信。这个方法消除了基于多阶段的多阶段掩罩头连接和基于非询问的多阶段分解方法中固有的建议分配不一致问题。我们就三种具有挑战性的基准进行了广泛的实验,即COCO、CityScapes和YouTube-VIS,以评价QuerInst在不同阶段的分解和视频分解(VIS)任务中查询的效用。 具体来说,使用ResNet-101-FPN主干键,QueryInst 获得明确的多阶段掩码头链接和42.8 AP 以CO 测试-devevy 方法来隐藏 。 CO 测试-develople Qev 方法在最大交易中达到2个节段,在最大节段中达到最大节中,在最大节中,在最大节中进行。

0
下载
关闭预览

相关内容

【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
15+阅读 · 2021年1月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
资源 | 图森未来开源:Mask R-CNN的完整MXNet复现
机器之心
6+阅读 · 2017年10月26日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
8+阅读 · 2021年6月1日
Arxiv
7+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年3月5日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关VIP内容
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
15+阅读 · 2021年1月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
相关资讯
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
资源 | 图森未来开源:Mask R-CNN的完整MXNet复现
机器之心
6+阅读 · 2017年10月26日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
相关论文
Arxiv
8+阅读 · 2021年6月1日
Arxiv
7+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年3月5日
Arxiv
7+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员