In this paper, a Rate-Splitting Multiple Access (RSMA) scheme is proposed to assist a Mobile Edge Computing (MEC) system where local computation tasks from two users are offloaded to the MEC server, facilitated by uplink RSMA for processing. The efficiency of the MEC service is hence primarily influenced by the RSMA-aided task offloading phase and the subsequent task computation phase, where reliable and low-latency communication is required. For this practical consideration, short-packet communication in the Finite Blocklength (FBL) regime is introduced. In this context, we propose a novel uplink RSMA-aided MEC framework and derive the overall Successful Computation Probability (SCP) with FBL consideration. To maximize the SCP of our proposed RSMA-aided MEC, we strategically optimize: (1) the task offloading factor which determines the number of tasks to be offloaded and processed by the MEC server; (2) the transmit power allocation between different RSMA streams; and (3) the task-splitting factor which decides how many tasks are allocated to splitting streams, while adhering to FBL constraints. To address the strong coupling between these variables in the SCP expression, we apply the Alternative Optimization method, which formulates tractable subproblems to optimize each variable iteratively. The resultant non-convex subproblems are then tackled by Successive Convex Approximation. Numerical results demonstrate that applying uplink RSMA in the MEC system with FBL constraints can not only improve the SCP performance but also provide lower latency in comparison to conventional transmission scheme such as Non-orthogonal Multiple Access (NOMA).


翻译:暂无翻译

0
下载
关闭预览

相关内容

计算机程序设计科学致力于软件系统开发、使用和维护领域的研究成果的分发,包括硬件设计的软件方面。 该杂志具有广泛的范围,从方法论基础的许多方面到技术问题的细节和工业实践的各个方面。 官网链接: http://dblp.uni-trier.de/db/journals/scp/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员