In many multiagent environments, a designer has some, but limited control over the game being played. In this paper, we formalize this by considering incompletely specified games, in which some entries of the payoff matrices can be chosen from a specified set. We show that it is NP-hard for the designer to make these choices optimally, even in zero-sum games. In fact, it is already intractable to decide whether a given action is (potentially or necessarily) played in equilibrium. We also consider incompletely specified symmetric games in which all completions are required to be symmetric. Here, hardness holds even in weak tournament games (symmetric zero-sum games whose entries are all -1, 0, or 1) and in tournament games (symmetric zero-sum games whose non-diagonal entries are all -1 or 1). The latter result settles the complexity of the possible and necessary winner problems for a social-choice-theoretic solution concept known as the bipartisan set. We finally give a mixed-integer linear programming formulation for weak tournament games and evaluate it experimentally.
翻译:在许多多试剂环境中, 设计师对游戏的玩耍拥有一定但有限的控制权。 在本文中, 我们通过考虑不完全指定的游戏来正式确定这一点, 在游戏中, 可以从指定的游戏组中选择报酬矩阵的某些条目。 我们显示, 设计师很难做出最佳选择, 即使是在零和游戏中。 事实上, 确定某个特定动作是否( 可能或必然) 是在平衡中玩耍的, 已经很难解决。 我们还会考虑不完全指定的对称游戏, 其中所有完成都需要对称。 在这里, 硬性甚至存在于较弱的比赛( 对称零和零的游戏, 其条目全部 - 1 、 0 或 1 ) 和比赛( 对称零和 游戏, 非对称游戏的条目全部 - 1 或 1 ) 和比赛中( 对称性零和游戏, 其非对称条目全部 - 1 或 1 ) 。 后, 解决被称为双向组合的社会混合理论解决方案概念的可能和必要的赢家问题的复杂性已经很难了。 我们最后为弱比赛提供了混合的线性编程设计, 并进行实验性评价 。