An extreme learning machine (ELM) is a three-layered feed-forward neural network having untrained parameters, which are randomly determined before training. Inspired by the idea of ELM, a probabilistic untrained layer called a probabilistic-ELM (PELM) layer is proposed, and it is combined with a discriminative restricted Boltzmann machine (DRBM), which is a probabilistic three-layered neural network for solving classification problems. The proposed model is obtained by stacking DRBM on the PELM layer. The resultant model (i.e., multi-layered DRBM (MDRBM)) forms a probabilistic four-layered neural network. In MDRBM, the parameters in the PELM layer can be determined using Gaussian-Bernoulli restricted Boltzmann machine. Owing to the PELM layer, MDRBM obtains a strong immunity against noise in inputs, which is one of the most important advantages of MDRBM. Numerical experiments using some benchmark datasets, MNIST, Fashion-MNIST, Urban Land Cover, and CIFAR-10, demonstrate that MDRBM is superior to other existing models, particularly, in terms of the noise-robustness property (or, in other words, the generalization property).
翻译:极端学习机器(ELM)是一个三层向神经网,其参数未经训练,在训练前随机确定。受ELM这个概念的启发,它是一个概率性非训练层,称为概率-ELM(PELM)层,它与一种具有歧视性的受限制的Boltzmann机器(DRBM)结合使用,这是一种解决分类问题的三层神经网络(DRBM)的概率性能。提议的模型是通过在PELM层堆叠DRBM获得的。由此产生的模型(即多层DRBM(MDRBM))形成一种概率性四层神经网络。在MDRBM中,PELM的参数可以用Gaussian-Bernzulli限制的波尔茨曼机器来确定。由于PELM层层,MDBM在投入中获得了强烈的不受噪音影响,这是MDRBM的最重要优势之一。NBM-BM实验,使用一些基准性能四层的四层神经网络。在一般数据模型中,CRFM-DMIS中, 以其他的高级语言演示。