Computationally weak systems and demanding graphical applications are still mostly dependent on linear blendshapes for facial animations. The accompanying artifacts such as self-intersections, loss of volume, or missing soft tissue elasticity can be avoided by using physics-based animation models. However, these are cumbersome to implement and require immense computational effort. We propose neural volumetric blendshapes, an approach that combines the advantages of physics-based simulations with realtime runtimes even on consumer-grade CPUs. To this end, we present a neural network that efficiently approximates the involved volumetric simulations and generalizes across human identities as well as facial expressions. Our approach can be used on top of any linear blendshape system and, hence, can be deployed straightforwardly. Furthermore, it only requires a single neutral face mesh as input in the minimal setting. Along with the design of the network, we introduce a pipeline for the challenging creation of anatomically and physically plausible training data. Part of the pipeline is a novel hybrid regressor that densely positions a skull within a skin surface while avoiding intersections. The fidelity of all parts of the data generation pipeline as well as the accuracy and efficiency of the network are evaluated in this work. Upon publication, the trained models and associated code will be released.


翻译:计算系统薄弱和要求很高的图形应用仍然主要依赖于用于面部动画的线性混合形状。随附的手工艺品,如自我内切、体积损失或软组织弹性缺失等,可以通过使用物理动画模型避免。然而,这些方法执行起来十分繁琐,需要巨大的计算努力。我们提议采用神经体积混合形状,这种方法将物理模拟的优势与实时运行时间相结合,甚至消费者级CPU的实时运行时间结合起来。为此,我们提出了一个神经网络,有效地近似所涉的体积模拟,并贯穿人类身份和面部表现。我们的方法可以在任何线性混合形状系统顶部使用,因此可以直接部署。此外,只需要在最小环境中输入一个单一的中性面体积混合形状。在设计网络的同时,我们引入一条管道,以挑战性的方式创建解剖析和物理上可信的训练数据数据数据数据数据。管道的一部分是一个新的混合回归器,在皮肤表面和面部层中将头骨架集中,同时避免交叉。我们的方法可以直接用于任何线性混合混合组合组合组合组合的模型的准确性,从而评估了数据生成模型的出版效率。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月25日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员