This paper is concerned with the development of suitable numerical method for the approximation of discontinuous solutions of parameter-dependent linear hyperbolic conservation laws. The objective is to reconstruct such approximation, for new instances of the parameter values for any time, from a transformation of pre-computed snapshots of the solution trajectories for new parameter values. In a finite volume setting, a Reconstruct-Transform-Average (RTA) algorithm inspired from the Reconstruct-Evolve-Average one of Godunov's method is proposed. It allows to perform, in three steps, a transformation of the snapshots with piecewise constant reconstruction. The method is fully detailed and analyzed for solving a parameter-dependent transport equation for which the spatial transformation is related to the characteristic intrinsic to the problem. Numerical results for transport equation and linear elastodynamics equations illustrate the good behavior of the proposed approach.
翻译:本文涉及开发适当的数字方法,以近似不连续解决参数依赖线性双曲保护法的近似方法。 目的是重建这种近似方法, 以便从溶解轨迹的预合成快照转换到新参数值, 随时对参数值进行新的实例的切换。 在有限的体积设置中, 提出了一个由Godunov 方法之一的重新构造- 动态- 动态- 视图法所启发的重新构建- 转换- 变异算法( RTA ) 。 它可以分三个步骤对镜进行切换, 并进行节奏常态重建。 该方法经过充分详细分析, 用于解决一个与问题特性相关的、 空间变换的、 以参数为依存的运输方程式。 运输方程式和线形 Elasto 动力方程式的数值结果说明了拟议方法的良好行为 。